forked from NYANDEV/forgejo
Vendor Update (#14496)
* update code.gitea.io/sdk/gitea v0.13.1 -> v0.13.2 * update github.com/go-swagger/go-swagger v0.25.0 -> v0.26.0 * update github.com/google/uuid v1.1.2 -> v1.2.0 * update github.com/klauspost/compress v1.11.3 -> v1.11.7 * update github.com/lib/pq 083382b7e6fc -> v1.9.0 * update github.com/markbates/goth v1.65.0 -> v1.66.1 * update github.com/mattn/go-sqlite3 v1.14.4 -> v1.14.6 * update github.com/mgechev/revive 246eac737dc7 -> v1.0.3 * update github.com/minio/minio-go/v7 v7.0.6 -> v7.0.7 * update github.com/niklasfasching/go-org v1.3.2 -> v1.4.0 * update github.com/olivere/elastic/v7 v7.0.21 -> v7.0.22 * update github.com/pquerna/otp v1.2.0 -> v1.3.0 * update github.com/xanzy/go-gitlab v0.39.0 -> v0.42.0 * update github.com/yuin/goldmark v1.2.1 -> v1.3.1
This commit is contained in:
parent
e45bf12a34
commit
d1353e1f7c
403 changed files with 29737 additions and 14357 deletions
21
vendor/github.com/rivo/uniseg/LICENSE.txt
generated
vendored
Normal file
21
vendor/github.com/rivo/uniseg/LICENSE.txt
generated
vendored
Normal file
|
@ -0,0 +1,21 @@
|
|||
MIT License
|
||||
|
||||
Copyright (c) 2019 Oliver Kuederle
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
62
vendor/github.com/rivo/uniseg/README.md
generated
vendored
Normal file
62
vendor/github.com/rivo/uniseg/README.md
generated
vendored
Normal file
|
@ -0,0 +1,62 @@
|
|||
# Unicode Text Segmentation for Go
|
||||
|
||||
[](https://godoc.org/github.com/rivo/uniseg)
|
||||
[](https://goreportcard.com/report/github.com/rivo/uniseg)
|
||||
|
||||
This Go package implements Unicode Text Segmentation according to [Unicode Standard Annex #29](http://unicode.org/reports/tr29/) (Unicode version 12.0.0).
|
||||
|
||||
At this point, only the determination of grapheme cluster boundaries is implemented.
|
||||
|
||||
## Background
|
||||
|
||||
In Go, [strings are read-only slices of bytes](https://blog.golang.org/strings). They can be turned into Unicode code points using the `for` loop or by casting: `[]rune(str)`. However, multiple code points may be combined into one user-perceived character or what the Unicode specification calls "grapheme cluster". Here are some examples:
|
||||
|
||||
|String|Bytes (UTF-8)|Code points (runes)|Grapheme clusters|
|
||||
|-|-|-|-|
|
||||
|Käse|6 bytes: `4b 61 cc 88 73 65`|5 code points: `4b 61 308 73 65`|4 clusters: `[4b],[61 308],[73],[65]`|
|
||||
|🏳️🌈|14 bytes: `f0 9f 8f b3 ef b8 8f e2 80 8d f0 9f 8c 88`|4 code points: `1f3f3 fe0f 200d 1f308`|1 cluster: `[1f3f3 fe0f 200d 1f308]`|
|
||||
|🇩🇪|8 bytes: `f0 9f 87 a9 f0 9f 87 aa`|2 code points: `1f1e9 1f1ea`|1 cluster: `[1f1e9 1f1ea]`|
|
||||
|
||||
This package provides a tool to iterate over these grapheme clusters. This may be used to determine the number of user-perceived characters, to split strings in their intended places, or to extract individual characters which form a unit.
|
||||
|
||||
## Installation
|
||||
|
||||
```bash
|
||||
go get github.com/rivo/uniseg
|
||||
```
|
||||
|
||||
## Basic Example
|
||||
|
||||
```go
|
||||
package uniseg
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
|
||||
"github.com/rivo/uniseg"
|
||||
)
|
||||
|
||||
func main() {
|
||||
gr := uniseg.NewGraphemes("👍🏼!")
|
||||
for gr.Next() {
|
||||
fmt.Printf("%x ", gr.Runes())
|
||||
}
|
||||
// Output: [1f44d 1f3fc] [21]
|
||||
}
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
Refer to https://godoc.org/github.com/rivo/uniseg for the package's documentation.
|
||||
|
||||
## Dependencies
|
||||
|
||||
This package does not depend on any packages outside the standard library.
|
||||
|
||||
## Your Feedback
|
||||
|
||||
Add your issue here on GitHub. Feel free to get in touch if you have any questions.
|
||||
|
||||
## Version
|
||||
|
||||
Version tags will be introduced once Golang modules are official. Consider this version 0.1.
|
8
vendor/github.com/rivo/uniseg/doc.go
generated
vendored
Normal file
8
vendor/github.com/rivo/uniseg/doc.go
generated
vendored
Normal file
|
@ -0,0 +1,8 @@
|
|||
/*
|
||||
Package uniseg implements Unicode Text Segmentation according to Unicode
|
||||
Standard Annex #29 (http://unicode.org/reports/tr29/).
|
||||
|
||||
At this point, only the determination of grapheme cluster boundaries is
|
||||
implemented.
|
||||
*/
|
||||
package uniseg
|
3
vendor/github.com/rivo/uniseg/go.mod
generated
vendored
Normal file
3
vendor/github.com/rivo/uniseg/go.mod
generated
vendored
Normal file
|
@ -0,0 +1,3 @@
|
|||
module github.com/rivo/uniseg
|
||||
|
||||
go 1.12
|
268
vendor/github.com/rivo/uniseg/grapheme.go
generated
vendored
Normal file
268
vendor/github.com/rivo/uniseg/grapheme.go
generated
vendored
Normal file
|
@ -0,0 +1,268 @@
|
|||
package uniseg
|
||||
|
||||
import "unicode/utf8"
|
||||
|
||||
// The states of the grapheme cluster parser.
|
||||
const (
|
||||
grAny = iota
|
||||
grCR
|
||||
grControlLF
|
||||
grL
|
||||
grLVV
|
||||
grLVTT
|
||||
grPrepend
|
||||
grExtendedPictographic
|
||||
grExtendedPictographicZWJ
|
||||
grRIOdd
|
||||
grRIEven
|
||||
)
|
||||
|
||||
// The grapheme cluster parser's breaking instructions.
|
||||
const (
|
||||
grNoBoundary = iota
|
||||
grBoundary
|
||||
)
|
||||
|
||||
// The grapheme cluster parser's state transitions. Maps (state, property) to
|
||||
// (new state, breaking instruction, rule number). The breaking instruction
|
||||
// always refers to the boundary between the last and next code point.
|
||||
//
|
||||
// This map is queried as follows:
|
||||
//
|
||||
// 1. Find specific state + specific property. Stop if found.
|
||||
// 2. Find specific state + any property.
|
||||
// 3. Find any state + specific property.
|
||||
// 4. If only (2) or (3) (but not both) was found, stop.
|
||||
// 5. If both (2) and (3) were found, use state and breaking instruction from
|
||||
// the transition with the lower rule number, prefer (3) if rule numbers
|
||||
// are equal. Stop.
|
||||
// 6. Assume grAny and grBoundary.
|
||||
var grTransitions = map[[2]int][3]int{
|
||||
// GB5
|
||||
{grAny, prCR}: {grCR, grBoundary, 50},
|
||||
{grAny, prLF}: {grControlLF, grBoundary, 50},
|
||||
{grAny, prControl}: {grControlLF, grBoundary, 50},
|
||||
|
||||
// GB4
|
||||
{grCR, prAny}: {grAny, grBoundary, 40},
|
||||
{grControlLF, prAny}: {grAny, grBoundary, 40},
|
||||
|
||||
// GB3.
|
||||
{grCR, prLF}: {grAny, grNoBoundary, 30},
|
||||
|
||||
// GB6.
|
||||
{grAny, prL}: {grL, grBoundary, 9990},
|
||||
{grL, prL}: {grL, grNoBoundary, 60},
|
||||
{grL, prV}: {grLVV, grNoBoundary, 60},
|
||||
{grL, prLV}: {grLVV, grNoBoundary, 60},
|
||||
{grL, prLVT}: {grLVTT, grNoBoundary, 60},
|
||||
|
||||
// GB7.
|
||||
{grAny, prLV}: {grLVV, grBoundary, 9990},
|
||||
{grAny, prV}: {grLVV, grBoundary, 9990},
|
||||
{grLVV, prV}: {grLVV, grNoBoundary, 70},
|
||||
{grLVV, prT}: {grLVTT, grNoBoundary, 70},
|
||||
|
||||
// GB8.
|
||||
{grAny, prLVT}: {grLVTT, grBoundary, 9990},
|
||||
{grAny, prT}: {grLVTT, grBoundary, 9990},
|
||||
{grLVTT, prT}: {grLVTT, grNoBoundary, 80},
|
||||
|
||||
// GB9.
|
||||
{grAny, prExtend}: {grAny, grNoBoundary, 90},
|
||||
{grAny, prZWJ}: {grAny, grNoBoundary, 90},
|
||||
|
||||
// GB9a.
|
||||
{grAny, prSpacingMark}: {grAny, grNoBoundary, 91},
|
||||
|
||||
// GB9b.
|
||||
{grAny, prPreprend}: {grPrepend, grBoundary, 9990},
|
||||
{grPrepend, prAny}: {grAny, grNoBoundary, 92},
|
||||
|
||||
// GB11.
|
||||
{grAny, prExtendedPictographic}: {grExtendedPictographic, grBoundary, 9990},
|
||||
{grExtendedPictographic, prExtend}: {grExtendedPictographic, grNoBoundary, 110},
|
||||
{grExtendedPictographic, prZWJ}: {grExtendedPictographicZWJ, grNoBoundary, 110},
|
||||
{grExtendedPictographicZWJ, prExtendedPictographic}: {grExtendedPictographic, grNoBoundary, 110},
|
||||
|
||||
// GB12 / GB13.
|
||||
{grAny, prRegionalIndicator}: {grRIOdd, grBoundary, 9990},
|
||||
{grRIOdd, prRegionalIndicator}: {grRIEven, grNoBoundary, 120},
|
||||
{grRIEven, prRegionalIndicator}: {grRIOdd, grBoundary, 120},
|
||||
}
|
||||
|
||||
// Graphemes implements an iterator over Unicode extended grapheme clusters,
|
||||
// specified in the Unicode Standard Annex #29. Grapheme clusters correspond to
|
||||
// "user-perceived characters". These characters often consist of multiple
|
||||
// code points (e.g. the "woman kissing woman" emoji consists of 8 code points:
|
||||
// woman + ZWJ + heavy black heart (2 code points) + ZWJ + kiss mark + ZWJ +
|
||||
// woman) and the rules described in Annex #29 must be applied to group those
|
||||
// code points into clusters perceived by the user as one character.
|
||||
type Graphemes struct {
|
||||
// The code points over which this class iterates.
|
||||
codePoints []rune
|
||||
|
||||
// The (byte-based) indices of the code points into the original string plus
|
||||
// len(original string). Thus, len(indices) = len(codePoints) + 1.
|
||||
indices []int
|
||||
|
||||
// The current grapheme cluster to be returned. These are indices into
|
||||
// codePoints/indices. If start == end, we either haven't started iterating
|
||||
// yet (0) or the iteration has already completed (1).
|
||||
start, end int
|
||||
|
||||
// The index of the next code point to be parsed.
|
||||
pos int
|
||||
|
||||
// The current state of the code point parser.
|
||||
state int
|
||||
}
|
||||
|
||||
// NewGraphemes returns a new grapheme cluster iterator.
|
||||
func NewGraphemes(s string) *Graphemes {
|
||||
l := utf8.RuneCountInString(s)
|
||||
codePoints := make([]rune, l)
|
||||
indices := make([]int, l+1)
|
||||
i := 0
|
||||
for pos, r := range s {
|
||||
codePoints[i] = r
|
||||
indices[i] = pos
|
||||
i++
|
||||
}
|
||||
indices[l] = len(s)
|
||||
g := &Graphemes{
|
||||
codePoints: codePoints,
|
||||
indices: indices,
|
||||
}
|
||||
g.Next() // Parse ahead.
|
||||
return g
|
||||
}
|
||||
|
||||
// Next advances the iterator by one grapheme cluster and returns false if no
|
||||
// clusters are left. This function must be called before the first cluster is
|
||||
// accessed.
|
||||
func (g *Graphemes) Next() bool {
|
||||
g.start = g.end
|
||||
|
||||
// The state transition gives us a boundary instruction BEFORE the next code
|
||||
// point so we always need to stay ahead by one code point.
|
||||
|
||||
// Parse the next code point.
|
||||
for g.pos <= len(g.codePoints) {
|
||||
// GB2.
|
||||
if g.pos == len(g.codePoints) {
|
||||
g.end = g.pos
|
||||
g.pos++
|
||||
break
|
||||
}
|
||||
|
||||
// Determine the property of the next character.
|
||||
nextProperty := property(g.codePoints[g.pos])
|
||||
g.pos++
|
||||
|
||||
// Find the applicable transition.
|
||||
var boundary bool
|
||||
transition, ok := grTransitions[[2]int{g.state, nextProperty}]
|
||||
if ok {
|
||||
// We have a specific transition. We'll use it.
|
||||
g.state = transition[0]
|
||||
boundary = transition[1] == grBoundary
|
||||
} else {
|
||||
// No specific transition found. Try the less specific ones.
|
||||
transAnyProp, okAnyProp := grTransitions[[2]int{g.state, prAny}]
|
||||
transAnyState, okAnyState := grTransitions[[2]int{grAny, nextProperty}]
|
||||
if okAnyProp && okAnyState {
|
||||
// Both apply. We'll use a mix (see comments for grTransitions).
|
||||
g.state = transAnyState[0]
|
||||
boundary = transAnyState[1] == grBoundary
|
||||
if transAnyProp[2] < transAnyState[2] {
|
||||
g.state = transAnyProp[0]
|
||||
boundary = transAnyProp[1] == grBoundary
|
||||
}
|
||||
} else if okAnyProp {
|
||||
// We only have a specific state.
|
||||
g.state = transAnyProp[0]
|
||||
boundary = transAnyProp[1] == grBoundary
|
||||
// This branch will probably never be reached because okAnyState will
|
||||
// always be true given the current transition map. But we keep it here
|
||||
// for future modifications to the transition map where this may not be
|
||||
// true anymore.
|
||||
} else if okAnyState {
|
||||
// We only have a specific property.
|
||||
g.state = transAnyState[0]
|
||||
boundary = transAnyState[1] == grBoundary
|
||||
} else {
|
||||
// No known transition. GB999: Any x Any.
|
||||
g.state = grAny
|
||||
boundary = true
|
||||
}
|
||||
}
|
||||
|
||||
// If we found a cluster boundary, let's stop here. The current cluster will
|
||||
// be the one that just ended.
|
||||
if g.pos-1 == 0 /* GB1 */ || boundary {
|
||||
g.end = g.pos - 1
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
return g.start != g.end
|
||||
}
|
||||
|
||||
// Runes returns a slice of runes (code points) which corresponds to the current
|
||||
// grapheme cluster. If the iterator is already past the end or Next() has not
|
||||
// yet been called, nil is returned.
|
||||
func (g *Graphemes) Runes() []rune {
|
||||
if g.start == g.end {
|
||||
return nil
|
||||
}
|
||||
return g.codePoints[g.start:g.end]
|
||||
}
|
||||
|
||||
// Str returns a substring of the original string which corresponds to the
|
||||
// current grapheme cluster. If the iterator is already past the end or Next()
|
||||
// has not yet been called, an empty string is returned.
|
||||
func (g *Graphemes) Str() string {
|
||||
if g.start == g.end {
|
||||
return ""
|
||||
}
|
||||
return string(g.codePoints[g.start:g.end])
|
||||
}
|
||||
|
||||
// Bytes returns a byte slice which corresponds to the current grapheme cluster.
|
||||
// If the iterator is already past the end or Next() has not yet been called,
|
||||
// nil is returned.
|
||||
func (g *Graphemes) Bytes() []byte {
|
||||
if g.start == g.end {
|
||||
return nil
|
||||
}
|
||||
return []byte(string(g.codePoints[g.start:g.end]))
|
||||
}
|
||||
|
||||
// Positions returns the interval of the current grapheme cluster as byte
|
||||
// positions into the original string. The first returned value "from" indexes
|
||||
// the first byte and the second returned value "to" indexes the first byte that
|
||||
// is not included anymore, i.e. str[from:to] is the current grapheme cluster of
|
||||
// the original string "str". If Next() has not yet been called, both values are
|
||||
// 0. If the iterator is already past the end, both values are 1.
|
||||
func (g *Graphemes) Positions() (int, int) {
|
||||
return g.indices[g.start], g.indices[g.end]
|
||||
}
|
||||
|
||||
// Reset puts the iterator into its initial state such that the next call to
|
||||
// Next() sets it to the first grapheme cluster again.
|
||||
func (g *Graphemes) Reset() {
|
||||
g.start, g.end, g.pos, g.state = 0, 0, 0, grAny
|
||||
g.Next() // Parse ahead again.
|
||||
}
|
||||
|
||||
// GraphemeClusterCount returns the number of user-perceived characters
|
||||
// (grapheme clusters) for the given string. To calculate this number, it
|
||||
// iterates through the string using the Graphemes iterator.
|
||||
func GraphemeClusterCount(s string) (n int) {
|
||||
g := NewGraphemes(s)
|
||||
for g.Next() {
|
||||
n++
|
||||
}
|
||||
return
|
||||
}
|
1658
vendor/github.com/rivo/uniseg/properties.go
generated
vendored
Normal file
1658
vendor/github.com/rivo/uniseg/properties.go
generated
vendored
Normal file
File diff suppressed because it is too large
Load diff
Loading…
Add table
Add a link
Reference in a new issue