mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2024-11-08 18:04:14 +01:00
35c3553870
Migrate from U2F to Webauthn Co-authored-by: Andrew Thornton <art27@cantab.net> Co-authored-by: 6543 <6543@obermui.de> Co-authored-by: wxiaoguang <wxiaoguang@gmail.com>
1292 lines
36 KiB
Go
Vendored
1292 lines
36 KiB
Go
Vendored
// Copyright (c) Faye Amacker. All rights reserved.
|
|
// Licensed under the MIT License. See LICENSE in the project root for license information.
|
|
|
|
package cbor
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding"
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"math"
|
|
"reflect"
|
|
"sort"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/x448/float16"
|
|
)
|
|
|
|
// Marshal returns the CBOR encoding of v using the default encoding options.
|
|
//
|
|
// Marshal uses the following type-dependent default encodings:
|
|
//
|
|
// Boolean values encode as CBOR booleans (type 7).
|
|
//
|
|
// Positive integer values encode as CBOR positive integers (type 0).
|
|
//
|
|
// Negative integer values encode as CBOR negative integers (type 1).
|
|
//
|
|
// Floating point values encode as CBOR floating points (type 7).
|
|
//
|
|
// String values encode as CBOR text strings (type 3).
|
|
//
|
|
// []byte values encode as CBOR byte strings (type 2).
|
|
//
|
|
// Array and slice values encode as CBOR arrays (type 4).
|
|
//
|
|
// Map values encode as CBOR maps (type 5).
|
|
//
|
|
// Struct values encode as CBOR maps (type 5). Each exported struct field
|
|
// becomes a pair with field name encoded as CBOR text string (type 3) and
|
|
// field value encoded based on its type.
|
|
//
|
|
// Pointer values encode as the value pointed to.
|
|
//
|
|
// Nil slice/map/pointer/interface values encode as CBOR nulls (type 7).
|
|
//
|
|
// time.Time values encode as text strings specified in RFC3339 when
|
|
// EncOptions.TimeRFC3339 is true; otherwise, time.Time values encode as
|
|
// numerical representation of seconds since January 1, 1970 UTC.
|
|
//
|
|
// If value implements the Marshaler interface, Marshal calls its MarshalCBOR
|
|
// method. If value implements encoding.BinaryMarshaler instead, Marhsal
|
|
// calls its MarshalBinary method and encode it as CBOR byte string.
|
|
//
|
|
// Marshal supports format string stored under the "cbor" key in the struct
|
|
// field's tag. CBOR format string can specify the name of the field, "omitempty"
|
|
// and "keyasint" options, and special case "-" for field omission. If "cbor"
|
|
// key is absent, Marshal uses "json" key.
|
|
//
|
|
// Struct field name is treated as integer if it has "keyasint" option in
|
|
// its format string. The format string must specify an integer as its
|
|
// field name.
|
|
//
|
|
// Special struct field "_" is used to specify struct level options, such as
|
|
// "toarray". "toarray" option enables Go struct to be encoded as CBOR array.
|
|
// "omitempty" is disabled by "toarray" to ensure that the same number
|
|
// of elements are encoded every time.
|
|
//
|
|
// Anonymous struct fields are usually marshaled as if their exported fields
|
|
// were fields in the outer struct. Marshal follows the same struct fields
|
|
// visibility rules used by JSON encoding package. An anonymous struct field
|
|
// with a name given in its CBOR tag is treated as having that name, rather
|
|
// than being anonymous. An anonymous struct field of interface type is
|
|
// treated the same as having that type as its name, rather than being anonymous.
|
|
//
|
|
// Interface values encode as the value contained in the interface. A nil
|
|
// interface value encodes as the null CBOR value.
|
|
//
|
|
// Channel, complex, and functon values cannot be encoded in CBOR. Attempting
|
|
// to encode such a value causes Marshal to return an UnsupportedTypeError.
|
|
func Marshal(v interface{}) ([]byte, error) {
|
|
return defaultEncMode.Marshal(v)
|
|
}
|
|
|
|
// Marshaler is the interface implemented by types that can marshal themselves
|
|
// into valid CBOR.
|
|
type Marshaler interface {
|
|
MarshalCBOR() ([]byte, error)
|
|
}
|
|
|
|
// UnsupportedTypeError is returned by Marshal when attempting to encode an
|
|
// unsupported value type.
|
|
type UnsupportedTypeError struct {
|
|
Type reflect.Type
|
|
}
|
|
|
|
func (e *UnsupportedTypeError) Error() string {
|
|
return "cbor: unsupported type: " + e.Type.String()
|
|
}
|
|
|
|
// SortMode identifies supported sorting order.
|
|
type SortMode int
|
|
|
|
const (
|
|
// SortNone means no sorting.
|
|
SortNone SortMode = 0
|
|
|
|
// SortLengthFirst causes map keys or struct fields to be sorted such that:
|
|
// - If two keys have different lengths, the shorter one sorts earlier;
|
|
// - If two keys have the same length, the one with the lower value in
|
|
// (byte-wise) lexical order sorts earlier.
|
|
// It is used in "Canonical CBOR" encoding in RFC 7049 3.9.
|
|
SortLengthFirst SortMode = 1
|
|
|
|
// SortBytewiseLexical causes map keys or struct fields to be sorted in the
|
|
// bytewise lexicographic order of their deterministic CBOR encodings.
|
|
// It is used in "CTAP2 Canonical CBOR" and "Core Deterministic Encoding"
|
|
// in RFC 7049bis.
|
|
SortBytewiseLexical SortMode = 2
|
|
|
|
// SortCanonical is used in "Canonical CBOR" encoding in RFC 7049 3.9.
|
|
SortCanonical SortMode = SortLengthFirst
|
|
|
|
// SortCTAP2 is used in "CTAP2 Canonical CBOR".
|
|
SortCTAP2 SortMode = SortBytewiseLexical
|
|
|
|
// SortCoreDeterministic is used in "Core Deterministic Encoding" in RFC 7049bis.
|
|
SortCoreDeterministic SortMode = SortBytewiseLexical
|
|
|
|
maxSortMode SortMode = 3
|
|
)
|
|
|
|
func (sm SortMode) valid() bool {
|
|
return sm < maxSortMode
|
|
}
|
|
|
|
// ShortestFloatMode specifies which floating-point format should
|
|
// be used as the shortest possible format for CBOR encoding.
|
|
// It is not used for encoding Infinity and NaN values.
|
|
type ShortestFloatMode int
|
|
|
|
const (
|
|
// ShortestFloatNone makes float values encode without any conversion.
|
|
// This is the default for ShortestFloatMode in v1.
|
|
// E.g. a float32 in Go will encode to CBOR float32. And
|
|
// a float64 in Go will encode to CBOR float64.
|
|
ShortestFloatNone ShortestFloatMode = iota
|
|
|
|
// ShortestFloat16 specifies float16 as the shortest form that preserves value.
|
|
// E.g. if float64 can convert to float32 while preserving value, then
|
|
// encoding will also try to convert float32 to float16. So a float64 might
|
|
// encode as CBOR float64, float32 or float16 depending on the value.
|
|
ShortestFloat16
|
|
|
|
maxShortestFloat
|
|
)
|
|
|
|
func (sfm ShortestFloatMode) valid() bool {
|
|
return sfm < maxShortestFloat
|
|
}
|
|
|
|
// NaNConvertMode specifies how to encode NaN and overrides ShortestFloatMode.
|
|
// ShortestFloatMode is not used for encoding Infinity and NaN values.
|
|
type NaNConvertMode int
|
|
|
|
const (
|
|
// NaNConvert7e00 always encodes NaN to 0xf97e00 (CBOR float16 = 0x7e00).
|
|
NaNConvert7e00 NaNConvertMode = iota
|
|
|
|
// NaNConvertNone never modifies or converts NaN to other representations
|
|
// (float64 NaN stays float64, etc. even if it can use float16 without losing
|
|
// any bits).
|
|
NaNConvertNone
|
|
|
|
// NaNConvertPreserveSignal converts NaN to the smallest form that preserves
|
|
// value (quiet bit + payload) as described in RFC 7049bis Draft 12.
|
|
NaNConvertPreserveSignal
|
|
|
|
// NaNConvertQuiet always forces quiet bit = 1 and shortest form that preserves
|
|
// NaN payload.
|
|
NaNConvertQuiet
|
|
|
|
maxNaNConvert
|
|
)
|
|
|
|
func (ncm NaNConvertMode) valid() bool {
|
|
return ncm < maxNaNConvert
|
|
}
|
|
|
|
// InfConvertMode specifies how to encode Infinity and overrides ShortestFloatMode.
|
|
// ShortestFloatMode is not used for encoding Infinity and NaN values.
|
|
type InfConvertMode int
|
|
|
|
const (
|
|
// InfConvertFloat16 always converts Inf to lossless IEEE binary16 (float16).
|
|
InfConvertFloat16 InfConvertMode = iota
|
|
|
|
// InfConvertNone never converts (used by CTAP2 Canonical CBOR).
|
|
InfConvertNone
|
|
|
|
maxInfConvert
|
|
)
|
|
|
|
func (icm InfConvertMode) valid() bool {
|
|
return icm < maxInfConvert
|
|
}
|
|
|
|
// TimeMode specifies how to encode time.Time values.
|
|
type TimeMode int
|
|
|
|
const (
|
|
// TimeUnix causes time.Time to be encoded as epoch time in integer with second precision.
|
|
TimeUnix TimeMode = iota
|
|
|
|
// TimeUnixMicro causes time.Time to be encoded as epoch time in float-point rounded to microsecond precision.
|
|
TimeUnixMicro
|
|
|
|
// TimeUnixDynamic causes time.Time to be encoded as integer if time.Time doesn't have fractional seconds,
|
|
// otherwise float-point rounded to microsecond precision.
|
|
TimeUnixDynamic
|
|
|
|
// TimeRFC3339 causes time.Time to be encoded as RFC3339 formatted string with second precision.
|
|
TimeRFC3339
|
|
|
|
// TimeRFC3339Nano causes time.Time to be encoded as RFC3339 formatted string with nanosecond precision.
|
|
TimeRFC3339Nano
|
|
|
|
maxTimeMode
|
|
)
|
|
|
|
func (tm TimeMode) valid() bool {
|
|
return tm < maxTimeMode
|
|
}
|
|
|
|
// EncOptions specifies encoding options.
|
|
type EncOptions struct {
|
|
// Sort specifies sorting order.
|
|
Sort SortMode
|
|
|
|
// ShortestFloat specifies the shortest floating-point encoding that preserves
|
|
// the value being encoded.
|
|
ShortestFloat ShortestFloatMode
|
|
|
|
// NaNConvert specifies how to encode NaN and it overrides ShortestFloatMode.
|
|
NaNConvert NaNConvertMode
|
|
|
|
// InfConvert specifies how to encode Inf and it overrides ShortestFloatMode.
|
|
InfConvert InfConvertMode
|
|
|
|
// Time specifies how to encode time.Time.
|
|
Time TimeMode
|
|
|
|
// TimeTag allows time.Time to be encoded with a tag number.
|
|
// RFC3339 format gets tag number 0, and numeric epoch time tag number 1.
|
|
TimeTag EncTagMode
|
|
|
|
// IndefLength specifies whether to allow indefinite length CBOR items.
|
|
IndefLength IndefLengthMode
|
|
|
|
// TagsMd specifies whether to allow CBOR tags (major type 6).
|
|
TagsMd TagsMode
|
|
}
|
|
|
|
// CanonicalEncOptions returns EncOptions for "Canonical CBOR" encoding,
|
|
// defined in RFC 7049 Section 3.9 with the following rules:
|
|
//
|
|
// 1. "Integers must be as small as possible."
|
|
// 2. "The expression of lengths in major types 2 through 5 must be as short as possible."
|
|
// 3. The keys in every map must be sorted in length-first sorting order.
|
|
// See SortLengthFirst for details.
|
|
// 4. "Indefinite-length items must be made into definite-length items."
|
|
// 5. "If a protocol allows for IEEE floats, then additional canonicalization rules might
|
|
// need to be added. One example rule might be to have all floats start as a 64-bit
|
|
// float, then do a test conversion to a 32-bit float; if the result is the same numeric
|
|
// value, use the shorter value and repeat the process with a test conversion to a
|
|
// 16-bit float. (This rule selects 16-bit float for positive and negative Infinity
|
|
// as well.) Also, there are many representations for NaN. If NaN is an allowed value,
|
|
// it must always be represented as 0xf97e00."
|
|
//
|
|
func CanonicalEncOptions() EncOptions {
|
|
return EncOptions{
|
|
Sort: SortCanonical,
|
|
ShortestFloat: ShortestFloat16,
|
|
NaNConvert: NaNConvert7e00,
|
|
InfConvert: InfConvertFloat16,
|
|
IndefLength: IndefLengthForbidden,
|
|
}
|
|
}
|
|
|
|
// CTAP2EncOptions returns EncOptions for "CTAP2 Canonical CBOR" encoding,
|
|
// defined in CTAP specification, with the following rules:
|
|
//
|
|
// 1. "Integers must be encoded as small as possible."
|
|
// 2. "The representations of any floating-point values are not changed."
|
|
// 3. "The expression of lengths in major types 2 through 5 must be as short as possible."
|
|
// 4. "Indefinite-length items must be made into definite-length items.""
|
|
// 5. The keys in every map must be sorted in bytewise lexicographic order.
|
|
// See SortBytewiseLexical for details.
|
|
// 6. "Tags as defined in Section 2.4 in [RFC7049] MUST NOT be present."
|
|
//
|
|
func CTAP2EncOptions() EncOptions {
|
|
return EncOptions{
|
|
Sort: SortCTAP2,
|
|
ShortestFloat: ShortestFloatNone,
|
|
NaNConvert: NaNConvertNone,
|
|
InfConvert: InfConvertNone,
|
|
IndefLength: IndefLengthForbidden,
|
|
TagsMd: TagsForbidden,
|
|
}
|
|
}
|
|
|
|
// CoreDetEncOptions returns EncOptions for "Core Deterministic" encoding,
|
|
// defined in RFC 7049bis with the following rules:
|
|
//
|
|
// 1. "Preferred serialization MUST be used. In particular, this means that arguments
|
|
// (see Section 3) for integers, lengths in major types 2 through 5, and tags MUST
|
|
// be as short as possible"
|
|
// "Floating point values also MUST use the shortest form that preserves the value"
|
|
// 2. "Indefinite-length items MUST NOT appear."
|
|
// 3. "The keys in every map MUST be sorted in the bytewise lexicographic order of
|
|
// their deterministic encodings."
|
|
//
|
|
func CoreDetEncOptions() EncOptions {
|
|
return EncOptions{
|
|
Sort: SortCoreDeterministic,
|
|
ShortestFloat: ShortestFloat16,
|
|
NaNConvert: NaNConvert7e00,
|
|
InfConvert: InfConvertFloat16,
|
|
IndefLength: IndefLengthForbidden,
|
|
}
|
|
}
|
|
|
|
// PreferredUnsortedEncOptions returns EncOptions for "Preferred Serialization" encoding,
|
|
// defined in RFC 7049bis with the following rules:
|
|
//
|
|
// 1. "The preferred serialization always uses the shortest form of representing the argument
|
|
// (Section 3);"
|
|
// 2. "it also uses the shortest floating-point encoding that preserves the value being
|
|
// encoded (see Section 5.5)."
|
|
// "The preferred encoding for a floating-point value is the shortest floating-point encoding
|
|
// that preserves its value, e.g., 0xf94580 for the number 5.5, and 0xfa45ad9c00 for the
|
|
// number 5555.5, unless the CBOR-based protocol specifically excludes the use of the shorter
|
|
// floating-point encodings. For NaN values, a shorter encoding is preferred if zero-padding
|
|
// the shorter significand towards the right reconstitutes the original NaN value (for many
|
|
// applications, the single NaN encoding 0xf97e00 will suffice)."
|
|
// 3. "Definite length encoding is preferred whenever the length is known at the time the
|
|
// serialization of the item starts."
|
|
//
|
|
func PreferredUnsortedEncOptions() EncOptions {
|
|
return EncOptions{
|
|
Sort: SortNone,
|
|
ShortestFloat: ShortestFloat16,
|
|
NaNConvert: NaNConvert7e00,
|
|
InfConvert: InfConvertFloat16,
|
|
}
|
|
}
|
|
|
|
// EncMode returns EncMode with immutable options and no tags (safe for concurrency).
|
|
func (opts EncOptions) EncMode() (EncMode, error) {
|
|
return opts.encMode()
|
|
}
|
|
|
|
// EncModeWithTags returns EncMode with options and tags that are both immutable (safe for concurrency).
|
|
func (opts EncOptions) EncModeWithTags(tags TagSet) (EncMode, error) {
|
|
if opts.TagsMd == TagsForbidden {
|
|
return nil, errors.New("cbor: cannot create EncMode with TagSet when TagsMd is TagsForbidden")
|
|
}
|
|
if tags == nil {
|
|
return nil, errors.New("cbor: cannot create EncMode with nil value as TagSet")
|
|
}
|
|
em, err := opts.encMode()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Copy tags
|
|
ts := tagSet(make(map[reflect.Type]*tagItem))
|
|
syncTags := tags.(*syncTagSet)
|
|
syncTags.RLock()
|
|
for contentType, tag := range syncTags.t {
|
|
if tag.opts.EncTag != EncTagNone {
|
|
ts[contentType] = tag
|
|
}
|
|
}
|
|
syncTags.RUnlock()
|
|
if len(ts) > 0 {
|
|
em.tags = ts
|
|
}
|
|
return em, nil
|
|
}
|
|
|
|
// EncModeWithSharedTags returns EncMode with immutable options and mutable shared tags (safe for concurrency).
|
|
func (opts EncOptions) EncModeWithSharedTags(tags TagSet) (EncMode, error) {
|
|
if opts.TagsMd == TagsForbidden {
|
|
return nil, errors.New("cbor: cannot create EncMode with TagSet when TagsMd is TagsForbidden")
|
|
}
|
|
if tags == nil {
|
|
return nil, errors.New("cbor: cannot create EncMode with nil value as TagSet")
|
|
}
|
|
em, err := opts.encMode()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
em.tags = tags
|
|
return em, nil
|
|
}
|
|
|
|
func (opts EncOptions) encMode() (*encMode, error) {
|
|
if !opts.Sort.valid() {
|
|
return nil, errors.New("cbor: invalid SortMode " + strconv.Itoa(int(opts.Sort)))
|
|
}
|
|
if !opts.ShortestFloat.valid() {
|
|
return nil, errors.New("cbor: invalid ShortestFloatMode " + strconv.Itoa(int(opts.ShortestFloat)))
|
|
}
|
|
if !opts.NaNConvert.valid() {
|
|
return nil, errors.New("cbor: invalid NaNConvertMode " + strconv.Itoa(int(opts.NaNConvert)))
|
|
}
|
|
if !opts.InfConvert.valid() {
|
|
return nil, errors.New("cbor: invalid InfConvertMode " + strconv.Itoa(int(opts.InfConvert)))
|
|
}
|
|
if !opts.Time.valid() {
|
|
return nil, errors.New("cbor: invalid TimeMode " + strconv.Itoa(int(opts.Time)))
|
|
}
|
|
if !opts.TimeTag.valid() {
|
|
return nil, errors.New("cbor: invalid TimeTag " + strconv.Itoa(int(opts.TimeTag)))
|
|
}
|
|
if !opts.IndefLength.valid() {
|
|
return nil, errors.New("cbor: invalid IndefLength " + strconv.Itoa(int(opts.IndefLength)))
|
|
}
|
|
if !opts.TagsMd.valid() {
|
|
return nil, errors.New("cbor: invalid TagsMd " + strconv.Itoa(int(opts.TagsMd)))
|
|
}
|
|
if opts.TagsMd == TagsForbidden && opts.TimeTag == EncTagRequired {
|
|
return nil, errors.New("cbor: cannot set TagsMd to TagsForbidden when TimeTag is EncTagRequired")
|
|
}
|
|
em := encMode{
|
|
sort: opts.Sort,
|
|
shortestFloat: opts.ShortestFloat,
|
|
nanConvert: opts.NaNConvert,
|
|
infConvert: opts.InfConvert,
|
|
time: opts.Time,
|
|
timeTag: opts.TimeTag,
|
|
indefLength: opts.IndefLength,
|
|
tagsMd: opts.TagsMd,
|
|
}
|
|
return &em, nil
|
|
}
|
|
|
|
// EncMode is the main interface for CBOR encoding.
|
|
type EncMode interface {
|
|
Marshal(v interface{}) ([]byte, error)
|
|
NewEncoder(w io.Writer) *Encoder
|
|
EncOptions() EncOptions
|
|
}
|
|
|
|
type encMode struct {
|
|
tags tagProvider
|
|
sort SortMode
|
|
shortestFloat ShortestFloatMode
|
|
nanConvert NaNConvertMode
|
|
infConvert InfConvertMode
|
|
time TimeMode
|
|
timeTag EncTagMode
|
|
indefLength IndefLengthMode
|
|
tagsMd TagsMode
|
|
}
|
|
|
|
var defaultEncMode = &encMode{}
|
|
|
|
// EncOptions returns user specified options used to create this EncMode.
|
|
func (em *encMode) EncOptions() EncOptions {
|
|
return EncOptions{
|
|
Sort: em.sort,
|
|
ShortestFloat: em.shortestFloat,
|
|
NaNConvert: em.nanConvert,
|
|
InfConvert: em.infConvert,
|
|
Time: em.time,
|
|
TimeTag: em.timeTag,
|
|
IndefLength: em.indefLength,
|
|
TagsMd: em.tagsMd,
|
|
}
|
|
}
|
|
|
|
func (em *encMode) encTagBytes(t reflect.Type) []byte {
|
|
if em.tags != nil {
|
|
if tagItem := em.tags.get(t); tagItem != nil {
|
|
return tagItem.cborTagNum
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Marshal returns the CBOR encoding of v using em encMode.
|
|
//
|
|
// See the documentation for Marshal for details.
|
|
func (em *encMode) Marshal(v interface{}) ([]byte, error) {
|
|
e := getEncodeState()
|
|
|
|
if err := encode(e, em, reflect.ValueOf(v)); err != nil {
|
|
putEncodeState(e)
|
|
return nil, err
|
|
}
|
|
|
|
buf := make([]byte, e.Len())
|
|
copy(buf, e.Bytes())
|
|
|
|
putEncodeState(e)
|
|
return buf, nil
|
|
}
|
|
|
|
// NewEncoder returns a new encoder that writes to w using em EncMode.
|
|
func (em *encMode) NewEncoder(w io.Writer) *Encoder {
|
|
return &Encoder{w: w, em: em, e: getEncodeState()}
|
|
}
|
|
|
|
// An encodeState encodes CBOR into a bytes.Buffer.
|
|
type encodeState struct {
|
|
bytes.Buffer
|
|
scratch [16]byte
|
|
}
|
|
|
|
// encodeStatePool caches unused encodeState objects for later reuse.
|
|
var encodeStatePool = sync.Pool{
|
|
New: func() interface{} {
|
|
e := new(encodeState)
|
|
e.Grow(32) // TODO: make this configurable
|
|
return e
|
|
},
|
|
}
|
|
|
|
func getEncodeState() *encodeState {
|
|
return encodeStatePool.Get().(*encodeState)
|
|
}
|
|
|
|
// putEncodeState returns e to encodeStatePool.
|
|
func putEncodeState(e *encodeState) {
|
|
e.Reset()
|
|
encodeStatePool.Put(e)
|
|
}
|
|
|
|
type encodeFunc func(e *encodeState, em *encMode, v reflect.Value) error
|
|
|
|
var (
|
|
cborFalse = []byte{0xf4}
|
|
cborTrue = []byte{0xf5}
|
|
cborNil = []byte{0xf6}
|
|
cborNaN = []byte{0xf9, 0x7e, 0x00}
|
|
cborPositiveInfinity = []byte{0xf9, 0x7c, 0x00}
|
|
cborNegativeInfinity = []byte{0xf9, 0xfc, 0x00}
|
|
)
|
|
|
|
func encode(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if !v.IsValid() {
|
|
// v is zero value
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
vt := v.Type()
|
|
f := getEncodeFunc(vt)
|
|
if f == nil {
|
|
return &UnsupportedTypeError{vt}
|
|
}
|
|
|
|
return f(e, em, v)
|
|
}
|
|
|
|
func encodeBool(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
b := cborFalse
|
|
if v.Bool() {
|
|
b = cborTrue
|
|
}
|
|
e.Write(b)
|
|
return nil
|
|
}
|
|
|
|
func encodeInt(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
i := v.Int()
|
|
if i >= 0 {
|
|
encodeHead(e, byte(cborTypePositiveInt), uint64(i))
|
|
return nil
|
|
}
|
|
i = i*(-1) - 1
|
|
encodeHead(e, byte(cborTypeNegativeInt), uint64(i))
|
|
return nil
|
|
}
|
|
|
|
func encodeUint(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
encodeHead(e, byte(cborTypePositiveInt), v.Uint())
|
|
return nil
|
|
}
|
|
|
|
func encodeFloat(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
f64 := v.Float()
|
|
if math.IsNaN(f64) {
|
|
return encodeNaN(e, em, v)
|
|
}
|
|
if math.IsInf(f64, 0) {
|
|
return encodeInf(e, em, v)
|
|
}
|
|
fopt := em.shortestFloat
|
|
if v.Kind() == reflect.Float64 && (fopt == ShortestFloatNone || cannotFitFloat32(f64)) {
|
|
// Encode float64
|
|
// Don't use encodeFloat64() because it cannot be inlined.
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(27)
|
|
binary.BigEndian.PutUint64(e.scratch[1:], math.Float64bits(f64))
|
|
e.Write(e.scratch[:9])
|
|
return nil
|
|
}
|
|
|
|
f32 := float32(f64)
|
|
if fopt == ShortestFloat16 {
|
|
var f16 float16.Float16
|
|
p := float16.PrecisionFromfloat32(f32)
|
|
if p == float16.PrecisionExact {
|
|
// Roundtrip float32->float16->float32 test isn't needed.
|
|
f16 = float16.Fromfloat32(f32)
|
|
} else if p == float16.PrecisionUnknown {
|
|
// Try roundtrip float32->float16->float32 to determine if float32 can fit into float16.
|
|
f16 = float16.Fromfloat32(f32)
|
|
if f16.Float32() == f32 {
|
|
p = float16.PrecisionExact
|
|
}
|
|
}
|
|
if p == float16.PrecisionExact {
|
|
// Encode float16
|
|
// Don't use encodeFloat16() because it cannot be inlined.
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(25)
|
|
binary.BigEndian.PutUint16(e.scratch[1:], uint16(f16))
|
|
e.Write(e.scratch[:3])
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Encode float32
|
|
// Don't use encodeFloat32() because it cannot be inlined.
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(26)
|
|
binary.BigEndian.PutUint32(e.scratch[1:], math.Float32bits(f32))
|
|
e.Write(e.scratch[:5])
|
|
return nil
|
|
}
|
|
|
|
func encodeInf(e *encodeState, em *encMode, v reflect.Value) error {
|
|
f64 := v.Float()
|
|
if em.infConvert == InfConvertFloat16 {
|
|
if f64 > 0 {
|
|
e.Write(cborPositiveInfinity)
|
|
} else {
|
|
e.Write(cborNegativeInfinity)
|
|
}
|
|
return nil
|
|
}
|
|
if v.Kind() == reflect.Float64 {
|
|
return encodeFloat64(e, f64)
|
|
}
|
|
return encodeFloat32(e, float32(f64))
|
|
}
|
|
|
|
func encodeNaN(e *encodeState, em *encMode, v reflect.Value) error {
|
|
switch em.nanConvert {
|
|
case NaNConvert7e00:
|
|
e.Write(cborNaN)
|
|
return nil
|
|
|
|
case NaNConvertNone:
|
|
if v.Kind() == reflect.Float64 {
|
|
return encodeFloat64(e, v.Float())
|
|
}
|
|
f32 := float32NaNFromReflectValue(v)
|
|
return encodeFloat32(e, f32)
|
|
|
|
default: // NaNConvertPreserveSignal, NaNConvertQuiet
|
|
if v.Kind() == reflect.Float64 {
|
|
f64 := v.Float()
|
|
f64bits := math.Float64bits(f64)
|
|
if em.nanConvert == NaNConvertQuiet && f64bits&(1<<51) == 0 {
|
|
f64bits |= 1 << 51 // Set quiet bit = 1
|
|
f64 = math.Float64frombits(f64bits)
|
|
}
|
|
// The lower 29 bits are dropped when converting from float64 to float32.
|
|
if f64bits&0x1fffffff != 0 {
|
|
// Encode NaN as float64 because dropped coef bits from float64 to float32 are not all 0s.
|
|
return encodeFloat64(e, f64)
|
|
}
|
|
// Create float32 from float64 manually because float32(f64) always turns on NaN's quiet bits.
|
|
sign := uint32(f64bits>>32) & (1 << 31)
|
|
exp := uint32(0x7f800000)
|
|
coef := uint32((f64bits & 0xfffffffffffff) >> 29)
|
|
f32bits := sign | exp | coef
|
|
f32 := math.Float32frombits(f32bits)
|
|
// The lower 13 bits are dropped when converting from float32 to float16.
|
|
if f32bits&0x1fff != 0 {
|
|
// Encode NaN as float32 because dropped coef bits from float32 to float16 are not all 0s.
|
|
return encodeFloat32(e, f32)
|
|
}
|
|
// Encode NaN as float16
|
|
f16, _ := float16.FromNaN32ps(f32) // Ignore err because it only returns error when f32 is not a NaN.
|
|
return encodeFloat16(e, f16)
|
|
}
|
|
|
|
f32 := float32NaNFromReflectValue(v)
|
|
f32bits := math.Float32bits(f32)
|
|
if em.nanConvert == NaNConvertQuiet && f32bits&(1<<22) == 0 {
|
|
f32bits |= 1 << 22 // Set quiet bit = 1
|
|
f32 = math.Float32frombits(f32bits)
|
|
}
|
|
// The lower 13 bits are dropped coef bits when converting from float32 to float16.
|
|
if f32bits&0x1fff != 0 {
|
|
// Encode NaN as float32 because dropped coef bits from float32 to float16 are not all 0s.
|
|
return encodeFloat32(e, f32)
|
|
}
|
|
f16, _ := float16.FromNaN32ps(f32) // Ignore err because it only returns error when f32 is not a NaN.
|
|
return encodeFloat16(e, f16)
|
|
}
|
|
}
|
|
|
|
func encodeFloat16(e *encodeState, f16 float16.Float16) error {
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(25)
|
|
binary.BigEndian.PutUint16(e.scratch[1:], uint16(f16))
|
|
e.Write(e.scratch[:3])
|
|
return nil
|
|
}
|
|
|
|
func encodeFloat32(e *encodeState, f32 float32) error {
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(26)
|
|
binary.BigEndian.PutUint32(e.scratch[1:], math.Float32bits(f32))
|
|
e.Write(e.scratch[:5])
|
|
return nil
|
|
}
|
|
|
|
func encodeFloat64(e *encodeState, f64 float64) error {
|
|
e.scratch[0] = byte(cborTypePrimitives) | byte(27)
|
|
binary.BigEndian.PutUint64(e.scratch[1:], math.Float64bits(f64))
|
|
e.Write(e.scratch[:9])
|
|
return nil
|
|
}
|
|
|
|
func encodeByteString(e *encodeState, em *encMode, v reflect.Value) error {
|
|
vk := v.Kind()
|
|
if vk == reflect.Slice && v.IsNil() {
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
slen := v.Len()
|
|
if slen == 0 {
|
|
return e.WriteByte(byte(cborTypeByteString))
|
|
}
|
|
encodeHead(e, byte(cborTypeByteString), uint64(slen))
|
|
if vk == reflect.Array {
|
|
for i := 0; i < slen; i++ {
|
|
e.WriteByte(byte(v.Index(i).Uint()))
|
|
}
|
|
return nil
|
|
}
|
|
e.Write(v.Bytes())
|
|
return nil
|
|
}
|
|
|
|
func encodeString(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
s := v.String()
|
|
encodeHead(e, byte(cborTypeTextString), uint64(len(s)))
|
|
e.WriteString(s)
|
|
return nil
|
|
}
|
|
|
|
// Assuming that arrayEncoder.f != nil
|
|
type arrayEncoder struct {
|
|
f encodeFunc
|
|
}
|
|
|
|
func (ae arrayEncoder) encodeArray(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if v.Kind() == reflect.Slice && v.IsNil() {
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
alen := v.Len()
|
|
if alen == 0 {
|
|
return e.WriteByte(byte(cborTypeArray))
|
|
}
|
|
encodeHead(e, byte(cborTypeArray), uint64(alen))
|
|
for i := 0; i < alen; i++ {
|
|
if err := ae.f(e, em, v.Index(i)); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Assuming that arrayEncoder.kf and arrayEncoder.ef are not nil
|
|
type mapEncoder struct {
|
|
kf, ef encodeFunc
|
|
}
|
|
|
|
func (me mapEncoder) encodeMap(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if v.IsNil() {
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
if b := em.encTagBytes(v.Type()); b != nil {
|
|
e.Write(b)
|
|
}
|
|
mlen := v.Len()
|
|
if mlen == 0 {
|
|
return e.WriteByte(byte(cborTypeMap))
|
|
}
|
|
if em.sort != SortNone {
|
|
return me.encodeMapCanonical(e, em, v)
|
|
}
|
|
encodeHead(e, byte(cborTypeMap), uint64(mlen))
|
|
iter := v.MapRange()
|
|
for iter.Next() {
|
|
if err := me.kf(e, em, iter.Key()); err != nil {
|
|
return err
|
|
}
|
|
if err := me.ef(e, em, iter.Value()); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type keyValue struct {
|
|
keyCBORData, keyValueCBORData []byte
|
|
keyLen, keyValueLen int
|
|
}
|
|
|
|
type bytewiseKeyValueSorter struct {
|
|
kvs []keyValue
|
|
}
|
|
|
|
func (x *bytewiseKeyValueSorter) Len() int {
|
|
return len(x.kvs)
|
|
}
|
|
|
|
func (x *bytewiseKeyValueSorter) Swap(i, j int) {
|
|
x.kvs[i], x.kvs[j] = x.kvs[j], x.kvs[i]
|
|
}
|
|
|
|
func (x *bytewiseKeyValueSorter) Less(i, j int) bool {
|
|
return bytes.Compare(x.kvs[i].keyCBORData, x.kvs[j].keyCBORData) <= 0
|
|
}
|
|
|
|
type lengthFirstKeyValueSorter struct {
|
|
kvs []keyValue
|
|
}
|
|
|
|
func (x *lengthFirstKeyValueSorter) Len() int {
|
|
return len(x.kvs)
|
|
}
|
|
|
|
func (x *lengthFirstKeyValueSorter) Swap(i, j int) {
|
|
x.kvs[i], x.kvs[j] = x.kvs[j], x.kvs[i]
|
|
}
|
|
|
|
func (x *lengthFirstKeyValueSorter) Less(i, j int) bool {
|
|
if len(x.kvs[i].keyCBORData) != len(x.kvs[j].keyCBORData) {
|
|
return len(x.kvs[i].keyCBORData) < len(x.kvs[j].keyCBORData)
|
|
}
|
|
return bytes.Compare(x.kvs[i].keyCBORData, x.kvs[j].keyCBORData) <= 0
|
|
}
|
|
|
|
var keyValuePool = sync.Pool{}
|
|
|
|
func getKeyValues(length int) *[]keyValue {
|
|
v := keyValuePool.Get()
|
|
if v == nil {
|
|
y := make([]keyValue, length)
|
|
return &y
|
|
}
|
|
x := v.(*[]keyValue)
|
|
if cap(*x) >= length {
|
|
*x = (*x)[:length]
|
|
return x
|
|
}
|
|
// []keyValue from the pool does not have enough capacity.
|
|
// Return it back to the pool and create a new one.
|
|
keyValuePool.Put(x)
|
|
y := make([]keyValue, length)
|
|
return &y
|
|
}
|
|
|
|
func putKeyValues(x *[]keyValue) {
|
|
*x = (*x)[:0]
|
|
keyValuePool.Put(x)
|
|
}
|
|
|
|
func (me mapEncoder) encodeMapCanonical(e *encodeState, em *encMode, v reflect.Value) error {
|
|
kve := getEncodeState() // accumulated cbor encoded key-values
|
|
kvsp := getKeyValues(v.Len()) // for sorting keys
|
|
kvs := *kvsp
|
|
iter := v.MapRange()
|
|
for i := 0; iter.Next(); i++ {
|
|
off := kve.Len()
|
|
if err := me.kf(kve, em, iter.Key()); err != nil {
|
|
putEncodeState(kve)
|
|
putKeyValues(kvsp)
|
|
return err
|
|
}
|
|
n1 := kve.Len() - off
|
|
if err := me.ef(kve, em, iter.Value()); err != nil {
|
|
putEncodeState(kve)
|
|
putKeyValues(kvsp)
|
|
return err
|
|
}
|
|
n2 := kve.Len() - off
|
|
// Save key and keyvalue length to create slice later.
|
|
kvs[i] = keyValue{keyLen: n1, keyValueLen: n2}
|
|
}
|
|
|
|
b := kve.Bytes()
|
|
for i, off := 0, 0; i < len(kvs); i++ {
|
|
kvs[i].keyCBORData = b[off : off+kvs[i].keyLen]
|
|
kvs[i].keyValueCBORData = b[off : off+kvs[i].keyValueLen]
|
|
off += kvs[i].keyValueLen
|
|
}
|
|
|
|
if em.sort == SortBytewiseLexical {
|
|
sort.Sort(&bytewiseKeyValueSorter{kvs})
|
|
} else {
|
|
sort.Sort(&lengthFirstKeyValueSorter{kvs})
|
|
}
|
|
|
|
encodeHead(e, byte(cborTypeMap), uint64(len(kvs)))
|
|
for i := 0; i < len(kvs); i++ {
|
|
e.Write(kvs[i].keyValueCBORData)
|
|
}
|
|
|
|
putEncodeState(kve)
|
|
putKeyValues(kvsp)
|
|
return nil
|
|
}
|
|
|
|
func encodeStructToArray(e *encodeState, em *encMode, v reflect.Value, flds fields) error {
|
|
encodeHead(e, byte(cborTypeArray), uint64(len(flds)))
|
|
FieldLoop:
|
|
for i := 0; i < len(flds); i++ {
|
|
f := flds[i]
|
|
fv := v
|
|
for k, n := range f.idx {
|
|
if k > 0 {
|
|
if fv.Kind() == reflect.Ptr && fv.Type().Elem().Kind() == reflect.Struct {
|
|
if fv.IsNil() {
|
|
// Write nil for null pointer to embedded struct
|
|
e.Write(cborNil)
|
|
continue FieldLoop
|
|
}
|
|
fv = fv.Elem()
|
|
}
|
|
}
|
|
fv = fv.Field(n)
|
|
}
|
|
if err := f.ef(e, em, fv); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func encodeFixedLengthStruct(e *encodeState, em *encMode, v reflect.Value, flds fields) error {
|
|
encodeHead(e, byte(cborTypeMap), uint64(len(flds)))
|
|
|
|
for i := 0; i < len(flds); i++ {
|
|
f := flds[i]
|
|
e.Write(f.cborName)
|
|
|
|
fv := v.Field(f.idx[0])
|
|
if err := f.ef(e, em, fv); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func encodeStruct(e *encodeState, em *encMode, v reflect.Value) error {
|
|
vt := v.Type()
|
|
structType := getEncodingStructType(vt)
|
|
if structType.err != nil {
|
|
return structType.err
|
|
}
|
|
|
|
if b := em.encTagBytes(vt); b != nil {
|
|
e.Write(b)
|
|
}
|
|
|
|
if structType.toArray {
|
|
return encodeStructToArray(e, em, v, structType.fields)
|
|
}
|
|
|
|
flds := structType.getFields(em)
|
|
|
|
if !structType.hasAnonymousField && !structType.omitEmpty {
|
|
return encodeFixedLengthStruct(e, em, v, flds)
|
|
}
|
|
|
|
kve := getEncodeState() // encode key-value pairs based on struct field tag options
|
|
kvcount := 0
|
|
FieldLoop:
|
|
for i := 0; i < len(flds); i++ {
|
|
f := flds[i]
|
|
fv := v
|
|
for k, n := range f.idx {
|
|
if k > 0 {
|
|
if fv.Kind() == reflect.Ptr && fv.Type().Elem().Kind() == reflect.Struct {
|
|
if fv.IsNil() {
|
|
// Null pointer to embedded struct
|
|
continue FieldLoop
|
|
}
|
|
fv = fv.Elem()
|
|
}
|
|
}
|
|
fv = fv.Field(n)
|
|
}
|
|
if f.omitEmpty && isEmptyValue(fv) {
|
|
continue
|
|
}
|
|
|
|
kve.Write(f.cborName)
|
|
|
|
if err := f.ef(kve, em, fv); err != nil {
|
|
putEncodeState(kve)
|
|
return err
|
|
}
|
|
kvcount++
|
|
}
|
|
|
|
encodeHead(e, byte(cborTypeMap), uint64(kvcount))
|
|
e.Write(kve.Bytes())
|
|
|
|
putEncodeState(kve)
|
|
return nil
|
|
}
|
|
|
|
func encodeIntf(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if v.IsNil() {
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
return encode(e, em, v.Elem())
|
|
}
|
|
|
|
func encodeTime(e *encodeState, em *encMode, v reflect.Value) error {
|
|
t := v.Interface().(time.Time)
|
|
if t.IsZero() {
|
|
e.Write(cborNil) // Even if tag is required, encode as CBOR null.
|
|
return nil
|
|
}
|
|
if em.timeTag == EncTagRequired {
|
|
tagNumber := 1
|
|
if em.time == TimeRFC3339 || em.time == TimeRFC3339Nano {
|
|
tagNumber = 0
|
|
}
|
|
encodeHead(e, byte(cborTypeTag), uint64(tagNumber))
|
|
}
|
|
switch em.time {
|
|
case TimeUnix:
|
|
secs := t.Unix()
|
|
return encodeInt(e, em, reflect.ValueOf(secs))
|
|
case TimeUnixMicro:
|
|
t = t.UTC().Round(time.Microsecond)
|
|
f := float64(t.UnixNano()) / 1e9
|
|
return encodeFloat(e, em, reflect.ValueOf(f))
|
|
case TimeUnixDynamic:
|
|
t = t.UTC().Round(time.Microsecond)
|
|
secs, nsecs := t.Unix(), uint64(t.Nanosecond())
|
|
if nsecs == 0 {
|
|
return encodeInt(e, em, reflect.ValueOf(secs))
|
|
}
|
|
f := float64(secs) + float64(nsecs)/1e9
|
|
return encodeFloat(e, em, reflect.ValueOf(f))
|
|
case TimeRFC3339:
|
|
s := t.Format(time.RFC3339)
|
|
return encodeString(e, em, reflect.ValueOf(s))
|
|
default: // TimeRFC3339Nano
|
|
s := t.Format(time.RFC3339Nano)
|
|
return encodeString(e, em, reflect.ValueOf(s))
|
|
}
|
|
}
|
|
|
|
func encodeBinaryMarshalerType(e *encodeState, em *encMode, v reflect.Value) error {
|
|
vt := v.Type()
|
|
m, ok := v.Interface().(encoding.BinaryMarshaler)
|
|
if !ok {
|
|
pv := reflect.New(vt)
|
|
pv.Elem().Set(v)
|
|
m = pv.Interface().(encoding.BinaryMarshaler)
|
|
}
|
|
data, err := m.MarshalBinary()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if b := em.encTagBytes(vt); b != nil {
|
|
e.Write(b)
|
|
}
|
|
encodeHead(e, byte(cborTypeByteString), uint64(len(data)))
|
|
e.Write(data)
|
|
return nil
|
|
}
|
|
|
|
func encodeMarshalerType(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if em.tagsMd == TagsForbidden && v.Type() == typeRawTag {
|
|
return errors.New("cbor: cannot encode cbor.RawTag when TagsMd is TagsForbidden")
|
|
}
|
|
m, ok := v.Interface().(Marshaler)
|
|
if !ok {
|
|
pv := reflect.New(v.Type())
|
|
pv.Elem().Set(v)
|
|
m = pv.Interface().(Marshaler)
|
|
}
|
|
data, err := m.MarshalCBOR()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
e.Write(data)
|
|
return nil
|
|
}
|
|
|
|
func encodeTag(e *encodeState, em *encMode, v reflect.Value) error {
|
|
if em.tagsMd == TagsForbidden {
|
|
return errors.New("cbor: cannot encode cbor.Tag when TagsMd is TagsForbidden")
|
|
}
|
|
|
|
t := v.Interface().(Tag)
|
|
|
|
// Marshal tag number
|
|
encodeHead(e, byte(cborTypeTag), t.Number)
|
|
|
|
// Marshal tag content
|
|
if err := encode(e, em, reflect.ValueOf(t.Content)); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func encodeHead(e *encodeState, t byte, n uint64) {
|
|
if n <= 23 {
|
|
e.WriteByte(t | byte(n))
|
|
return
|
|
}
|
|
if n <= math.MaxUint8 {
|
|
e.scratch[0] = t | byte(24)
|
|
e.scratch[1] = byte(n)
|
|
e.Write(e.scratch[:2])
|
|
return
|
|
}
|
|
if n <= math.MaxUint16 {
|
|
e.scratch[0] = t | byte(25)
|
|
binary.BigEndian.PutUint16(e.scratch[1:], uint16(n))
|
|
e.Write(e.scratch[:3])
|
|
return
|
|
}
|
|
if n <= math.MaxUint32 {
|
|
e.scratch[0] = t | byte(26)
|
|
binary.BigEndian.PutUint32(e.scratch[1:], uint32(n))
|
|
e.Write(e.scratch[:5])
|
|
return
|
|
}
|
|
e.scratch[0] = t | byte(27)
|
|
binary.BigEndian.PutUint64(e.scratch[1:], n)
|
|
e.Write(e.scratch[:9])
|
|
}
|
|
|
|
var (
|
|
typeMarshaler = reflect.TypeOf((*Marshaler)(nil)).Elem()
|
|
typeBinaryMarshaler = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
|
|
)
|
|
|
|
func getEncodeFuncInternal(t reflect.Type) encodeFunc {
|
|
k := t.Kind()
|
|
if k == reflect.Ptr {
|
|
return getEncodeIndirectValueFunc(t)
|
|
}
|
|
if t == typeTag {
|
|
return encodeTag
|
|
}
|
|
if t == typeTime {
|
|
return encodeTime
|
|
}
|
|
if reflect.PtrTo(t).Implements(typeMarshaler) {
|
|
return encodeMarshalerType
|
|
}
|
|
if reflect.PtrTo(t).Implements(typeBinaryMarshaler) {
|
|
return encodeBinaryMarshalerType
|
|
}
|
|
switch k {
|
|
case reflect.Bool:
|
|
return encodeBool
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return encodeInt
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
|
|
return encodeUint
|
|
case reflect.Float32, reflect.Float64:
|
|
return encodeFloat
|
|
case reflect.String:
|
|
return encodeString
|
|
case reflect.Slice, reflect.Array:
|
|
if t.Elem().Kind() == reflect.Uint8 {
|
|
return encodeByteString
|
|
}
|
|
f := getEncodeFunc(t.Elem())
|
|
if f == nil {
|
|
return nil
|
|
}
|
|
return arrayEncoder{f: f}.encodeArray
|
|
case reflect.Map:
|
|
kf, ef := getEncodeFunc(t.Key()), getEncodeFunc(t.Elem())
|
|
if kf == nil || ef == nil {
|
|
return nil
|
|
}
|
|
return mapEncoder{kf: kf, ef: ef}.encodeMap
|
|
case reflect.Struct:
|
|
return encodeStruct
|
|
case reflect.Interface:
|
|
return encodeIntf
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func getEncodeIndirectValueFunc(t reflect.Type) encodeFunc {
|
|
for t.Kind() == reflect.Ptr {
|
|
t = t.Elem()
|
|
}
|
|
f := getEncodeFunc(t)
|
|
if f == nil {
|
|
return nil
|
|
}
|
|
return func(e *encodeState, em *encMode, v reflect.Value) error {
|
|
for v.Kind() == reflect.Ptr && !v.IsNil() {
|
|
v = v.Elem()
|
|
}
|
|
if v.Kind() == reflect.Ptr && v.IsNil() {
|
|
e.Write(cborNil)
|
|
return nil
|
|
}
|
|
return f(e, em, v)
|
|
}
|
|
}
|
|
|
|
func isEmptyValue(v reflect.Value) bool {
|
|
switch v.Kind() {
|
|
case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
|
|
return v.Len() == 0
|
|
case reflect.Bool:
|
|
return !v.Bool()
|
|
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
|
|
return v.Int() == 0
|
|
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
|
|
return v.Uint() == 0
|
|
case reflect.Float32, reflect.Float64:
|
|
return v.Float() == 0
|
|
case reflect.Interface, reflect.Ptr:
|
|
return v.IsNil()
|
|
}
|
|
return false
|
|
}
|
|
|
|
func cannotFitFloat32(f64 float64) bool {
|
|
f32 := float32(f64)
|
|
return float64(f32) != f64
|
|
}
|
|
|
|
// float32NaNFromReflectValue extracts float32 NaN from reflect.Value while preserving NaN's quiet bit.
|
|
func float32NaNFromReflectValue(v reflect.Value) float32 {
|
|
// Keith Randall's workaround for issue https://github.com/golang/go/issues/36400
|
|
p := reflect.New(v.Type())
|
|
p.Elem().Set(v)
|
|
f32 := p.Convert(reflect.TypeOf((*float32)(nil))).Elem().Interface().(float32)
|
|
return f32
|
|
}
|